Project Hosting | Website Analytics

My Live Web Analytics Dashboard

πŸ‘‰ Click here to open the dashboard


Why Put It Online?

β€’ Easy to share with a link
β€’ Strong addition to your portfolio
β€’ Accessible anytime, anywhere
β€’ Shows you can deploy, not just build


How I Hosted It

I used GitHub Pages for static content and Streamlit Cloud for the interactive dashboard. Steps are simple: push to GitHub β†’ enable Pages in Settings β†’ share the link.


Putting this project online makes it more than codeβ€”it’s now a live, interactive piece of my portfolio that recruiters and collaborators can explore anytime.


Previous Topic==> Project Insights  Next Topics==> Github Portfolio


SQL All topics Wise Interview Questions    Employee Salary Management SQL FAQ!.   C FAQ   Top 25 PL/SQL Interview Questions

Joins With Group by Having  Equi Join  Joins with Subqueries  Self Join  Outer Join 


Website Analytics Project: Phases and Action Steps

  • Home
  • 🟒 Live App: Web Analytics Simulator
  • Phase 0: Project Setup & Problem Definition
  • 0.1 Define Project Goals & Challenges
  • 0.2 Select Tools, Tech Stack & Data Sources
  • 0.3 Software Requirements & Installation
  • 0.4 Folder Structure & GitHub Repo
  • 0.5 Testing Project Locally
  • Phase 1: Planning for Analytics
  • 1.1 Website Analytics Project Overview
  • 1.2 Define KPIs, Bounce Rate, Engagement
  • 1.3 Identify Target Users & Pain Points
  • Phase 2: Data Collection
  • 2.1 Setup Google Analytics 4 (GA4)
  • 2.2 Export GA4 Data to BigQuery/CSV
  • 2.3 Design SQL Schema for Web Analytics
  • Phase 3: Data Cleaning & Feature Engineering
  • 3.1 Clean Website Data with Python & Pandas
  • 3.2 Create Custom Metrics (Session, Bounce, etc.)
  • Phase 4: Exploratory Data Analysis (EDA)
  • 4.1 Analyze Website Traffic Trends
  • 4.2 Behavior by Device, Source, Location
  • 4.3 Top Pages & High Bounce Pages
  • 4.4 Diagnose Low Traffic & User Drop
  • Phase 5: Business Insights
  • 5.1 Funnel Analysis & Drop-Off Points
  • 5.2 New vs Returning Users
  • 5.3 Time Spent & Scroll Depth
  • Phase 6: SQL for Business
  • 6.1 SQL for Business Insights
  • 6.2 Combine Web Data Using SQL
  • 6.3 Find Problematic Pages Using SQL
  • Phase 7: Machine Learning
  • 7.1 Segment Users with Clustering
  • 7.2 Predict Bounce Rate with ML
  • 7.3 Recommend Pages or Content
  • Phase 8: Dashboards & Visualization
  • 8.1 Dashboard with Streamlit
  • 8.2 Visualize KPIs with Python
  • 8.3 Page-Level Metrics & Drop Heatmaps
  • Phase 9: Final Analytics Story
  • 9.1 Summary Report & Findings
  • Phase 10: Hosting & Portfolio Presentation
  • 10.1 Host Website Project Online
  • 10.2 Add to GitHub with ReadMe
  • 10.3 Pitch Project in Interview
  • Other Topics
  • SQL Interview Questions
  • SQL Case Study: Account Management
  • Python Interview Questions
  • Why C Language

Get in touch

  • tech2dsm@gmail.com

© Sankalan Data Tech. All rights reserved.